Computational analysis of F-actin turnover in cortical actin meshworks using fluorescent speckle microscopy.

نویسندگان

  • A Ponti
  • P Vallotton
  • W C Salmon
  • C M Waterman-Storer
  • G Danuser
چکیده

Fluorescent speckle microscopy (FSM) is a new imaging technique with the potential for simultaneous visualization of translocation and dynamic turnover of polymer structures. However, the use of FSM has been limited by the lack of specialized software for analysis of the positional and photometric fluctuations of hundreds of thousand speckles in an FSM time-lapse series, and for translating this data into biologically relevant information. In this paper we present a first version of a software for automated analysis of FSM movies. We focus on mapping the assembly and disassembly kinetics of a polymer meshwork. As a model system we have employed cortical F-actin meshworks in live newt lung epithelial cells. We lay out the algorithm in detail and present results of our analysis. The high spatial and temporal resolution of our maps reveals a kinetic cycling of F-actin, where phases of polymerization alternate with depolymerization in a spatially coordinated fashion. The cycle rates change when treating cells with a low dose of the drug latrunculin A. This shows the potential of this technique for future quantitative screening of drugs affecting the actin cytoskeleton. Various control experiments demonstrate that the algorithm is robust with respect to intensity variations due to noise and photobleaching and that effects of focus plane drifts can be eliminated by manual refocusing during image acquisition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous mapping of filamentous actin flow and turnover in migrating cells by quantitative fluorescent speckle microscopy.

We report advances in quantitative fluorescent speckle microscopy to generate simultaneous maps of cytoskeleton flow and rates of net assembly and disassembly in living cells. We apply this tool to analyze the filamentous actin (F-actin) dynamics at the front of migrating cells. F-actin turnover and flow are both known to be factors of cell locomotion. However, how they are orchestrated to prod...

متن کامل

Live cell imaging of F-actin dynamics via Fluorescent Speckle Microscopy (FSM).

In this protocol we describe the use of Fluorescent Speckle Microscopy (FSM) to capture high-resolution images of actin dynamics in PtK1 cells. A unique advantage of FSM is its ability to capture the movement and turnover kinetics (assembly/disassembly) of the F-actin network within living cells. This technique is particularly useful in deriving quantitative measurements of F-actin dynamics whe...

متن کامل

New single-molecule speckle microscopy reveals modification of the retrograde actin flow by focal adhesions at nanometer scales

Speckle microscopy directly visualizes the retrograde actin flow, which is believed to promote cell-edge protrusion when linked to focal adhesions (FAs). However, it has been argued that, due to rapid actin turnover, the use of green fluorescent protein-actin, the lack of appropriate analysis algorithms, and technical difficulties, speckle microscopy does not necessarily report the flow velocit...

متن کامل

Periodic patterns of actin turnover in lamellipodia and lamellae of migrating epithelial cells analyzed by quantitative Fluorescent Speckle Microscopy.

We measured actin turnover in lamellipodia and lamellae of migrating cells, using quantitative Fluorescent Speckle Microscopy. Lamellae disassembled at low rates from the front to the back. However, the dominant feature in their turnover was a spatially random pattern of periodic polymerization and depolymerization moving with the retrograde flow. Power spectra contained frequencies between 0.5...

متن کامل

Dual-wavelength fluorescent speckle microscopy reveals coupling of microtubule and actin movements in migrating cells

Interactions between microtubules (MTs) and filamentous actin (f-actin) are involved in directed cell locomotion, but are poorly understood. To test the hypothesis that MTs and f-actin associate with one another and affect each other's organization and dynamics, we performed time-lapse dual-wavelength spinning-disk confocal fluorescent speckle microscopy (FSM) of MTs and f-actin in migrating ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 84 5  شماره 

صفحات  -

تاریخ انتشار 2003